Intracerebroventricular Administration of Neuropeptide Y Induces Hepatic Insulin Resistance via Sympathetic Innervation

نویسندگان

  • Anita M. van den Hoek
  • Caroline van Heijningen
  • Janny P. Schröder-van der Elst
  • D. Margriet Ouwens
  • Louis M. Havekes
  • Johannes A. Romijn
  • Andries Kalsbeek
  • Hanno Pijl
چکیده

OBJECTIVE We recently showed that intracerebroventricular infusion of neuropeptide Y (NPY) hampers inhibition of endogenous glucose production (EGP) by insulin in mice. The downstream mechanisms responsible for these effects of NPY remain to be elucidated. Therefore, the aim of this study was to establish whether intracerebroventricular NPY administration modulates the suppressive action of insulin on EGP via hepatic sympathetic or parasympathetic innervation. RESEARCH DESIGN AND METHODS The effects of a continuous intracerebroventricular infusion of NPY on glucose turnover were determined in rats during a hyperinsulinemic-euglycemic clamp. Either rats were sham operated, or the liver was sympathetically (hepatic sympathectomy) or parasympathetically (hepatic parasympathectomy) denervated. RESULTS Sympathectomy or parasympathectomy did not affect the capacity of insulin to suppress EGP in intracerebroventricular vehicle-infused animals (50 +/- 8 vs. 49 +/- 6 vs. 55 +/- 6%, in hepatic sympathectomy vs. hepatic parasympathectomy vs. sham, respectively). Intracerebroventricular infusion of NPY significantly hampered the suppression of EGP by insulin in sham-denervated animals (29 +/- 9 vs. 55 +/- 6% for NPY/sham vs. vehicle/sham, respectively, P = 0.038). Selective sympathetic denervation of the liver completely blocked the effect of intracerebroventricular NPY administration on insulin action to suppress EGP (NPY/hepatic sympathectomy, 57 +/- 7%), whereas selective parasympathetic denervation had no effect (NPY/hepatic parasympathectomy, 29 +/- 7%). CONCLUSIONS Intracerebroventricular administration of NPY acutely induces insulin resistance of EGP via activation of sympathetic output to the liver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypothalamic Neuropeptide Y (NPY) Controls Hepatic VLDL-Triglyceride Secretion in Rats via the Sympathetic Nervous System

Excessive secretion of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to diabetic dyslipidemia. Earlier studies have indicated a possible role for the hypothalamus and autonomic nervous system in the regulation of VLDL-TG. In the current study, we investigated whether the autonomic nervous system and hypothalamic neuropeptide Y (NPY) release during fasting regulates hepat...

متن کامل

Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

OBJECTIVE Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration o...

متن کامل

Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity

Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on en...

متن کامل

Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

OBJECTIVE The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropept...

متن کامل

A Major Role for Perifornical Orexin Neurons in the Control of Glucose Metabolism in Rats

OBJECTIVE The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous hypothalamic orexin release in glucose homeostasis in rats. RESEARCH DESIGN AND METHODS We investigated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008